Muhammad Kashif Jabbar | Artificial Intelligence | Best Researcher Award

Mr. Muhammad Kashif Jabbar | Artificial Intelligence | Best Researcher Award

Doctor Student at Shenzhen University, China

Muhammad Kashif Jabbar is a research-focused professional specializing in medical image processing. With a strong foundation in Electronics and Information Engineering, he has contributed significantly to research, particularly in developing transfer learning-based models for diabetic retinopathy diagnosis. Muhammad Kashif is multilingual, skilled in technical domains, and experienced in international collaborations.

Publication ProfileΒ 

Scopus

Educational Background πŸŽ“

  1. Shenzhen University
    • Degree: Ph.D. in Electronics and Information Engineering
    • Specialization: Medical Image Processing
    • Session: September 2018 – June 2022
  2. Beijing University of Technology (BJUT)
    • Degree: Master’s in Information and Communication Engineering
    • Specialization: Medical Image Processing
    • Session: September 2018 – June 2022
  3. Superior University of Lahore
    • Degree: Master’s in Information Technology (MIT)
    • Session: 2014 – 2016

Professional Experience πŸ’Ό

  • Worked extensively on developing advanced methodologies in medical image processing.
  • Conducted research focusing on diabetic retinopathy diagnosis, utilizing transfer learning techniques.
  • Developed applications in web development and database management.

Research Interests πŸ”¬

  • Medical Image Processing
  • Transfer Learning for Disease Diagnosis
  • Data Security in Medical Imaging (Steganography and Cryptography)
  • Artificial Intelligence and Optimization Algorithms in Healthcare Applications

Awards and HonorsπŸ†βœ¨

  • Passed HSK4 Chinese Language Proficiency Exam (2018).
  • Performed at the 14th BJUT International Day opening ceremony.
  • Recognized for successful completion of the 2019 International Students Exploring Haidian program.

Certifications

  1. HSK4 Chinese Language Certification – Beijing University of Technology
  2. Graphic Design – ARENA Multimedia, Islamabad Campus (2015)

Conclusion🌟

Muhammad Kashif Jabbar is a highly skilled researcher with a passion for advancing medical technologies using artificial intelligence and image processing techniques. His education and expertise make him a valuable asset to organizations focused on cutting-edge medical research and innovation.

Publications πŸ“š

πŸ“‘ Radar and Engineering

  1. Enhancing Radar Tracking Accuracy Using Combined Hilbert Transform and Proximal Gradient Methods
    • Authors: Jabbar, A., Jabbar, M.K., Jabbar, A., Mahmood, T., Rehman, A.
    • Journal: Results in Engineering, 2024, 24, 103479.
    • 🌐 Type: Article (Open Access)
    • πŸ“Š Citations: 0

πŸ‘οΈ Ophthalmology and AI

  1. A Retinal Detachment Based Strabismus Detection Through FEDCNN
    • Authors: Jabbar, A., Jabbar, M.K., Mahmood, T., Nobanee, H., Rehman, A.
    • Journal: Scientific Reports, 2024, 14(1), 23255.
    • 🌐 Type: Article (Open Access)
    • πŸ“Š Citations: 0

πŸ”„ Errata and Corrections

  1. Correction to: Deep Transfer Learning-Based Automated Diabetic Retinopathy Detection Using Retinal Fundus Images in Remote Areas
    • Authors: Jabbar, A., Naseem, S., Li, J., Rehman, A., Saba, T.
    • Journal: International Journal of Computational Intelligence Systems, 2024, 17(1), 145.
    • 🌐 Type: Erratum (Open Access)
    • πŸ“Š Citations: 1

  2. Correction to: Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images

    • Authors: Jabbar, M.K., Yan, J., Xu, H., Ur Rehman, Z., Jabbar, A.
    • Journal: Brain Sciences, 2024, 14(8), 777.
    • 🌐 Type: Erratum (Open Access)
    • πŸ“Š Citations: 0

🧠 Diabetic Retinopathy and AI Models

  1. Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images
    • Authors: Jabbar, M.K., Yan, J., Xu, H., Rehman, Z.U., Jabbar, A.
    • Journal: Brain Sciences, 2022, 12(5), 535.
    • 🌐 Type: Article (Open Access)
    • πŸ“Š Citations: 49

 

 

 

Dehong Gao | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof. Dr. Dehong Gao | Artificial Intelligence | Outstanding Scientist Award

Associate Professor at Northwestern Polytechnical University, China

Dehong Gao is a distinguished expert in the fields of natural language processing, machine learning, and large language models. With over a decade of research and practical experience, he has made significant contributions to advertising technologies, multimodal AI models, and AI-driven e-commerce solutions. Gao currently leads groundbreaking work on multimodal pre-training models, including the award-winning 70B-FashionGPT model. As an associate professor at Northwestern Polytechnical University and a distinguished researcher at Zhejiang University of Technology, Gao continues to advance AI research, particularly in the areas of large language models, multimodal learning, and cross-lingual search. πŸš€πŸ“šπŸ’‘

Publication Profile :Β 

Scopus

Educational Background πŸŽ“

  • Ph.D. in Computer Science from Hong Kong Polytechnic University (2014-2022), under the supervision of Li Wenjie.
  • Master’s in Automation from Northwestern Polytechnical University (2010).
  • Bachelor’s in Automation from Northwestern Polytechnical University (2007).

Professional Experience πŸ’Ό

Dehong Gao’s career spans both academia and industry. He is currently an Associate Professor at the School of Cyberspace Security at Northwestern Polytechnical University. He also serves as a Distinguished Researcher at the Zhejiang University of Technology Artificial Intelligence Innovation Institute. Gao previously held the position of Senior Algorithm Expert (P8) at Alibaba Group, where he led a team of over 20 full-time algorithm engineers and contributed to the development of large-scale machine translation and AI-driven e-commerce solutions. As an expert in Alibaba AIR Project, Gao has been instrumental in technical breakthroughs related to large model technologies, fine-tuning multimodal models, and advancing AI-based search and advertising systems. πŸ’»πŸ“ˆ

Research Interests πŸ”¬

Gao’s research interests are focused on:

  • Large Language Models (LLMs) and Multimodal Learning πŸŒπŸ€–
  • Natural Language Processing: Information retrieval, recommendation systems, sentiment analysis, and automated summarization πŸ“‘πŸ”
  • E-commerce AI: Developing search algorithms and multilingual representation learning for cross-border e-commerce applications πŸŒπŸ›’
  • Federated Learning and AI-driven personalization in business settings πŸ”’πŸ€–

He has authored and co-authored several influential papers and has been a leading figure in the development of multimodal AI models for industries such as fashion, e-commerce, and healthcare. His work continues to push the boundaries of AI application in real-world environments. πŸ†πŸ“š

Publications πŸ“š

  1. Gao, D., Chen, K., Chen, B., et al. (2024). LLMs-based Machine Translation for E-commerce. Expert Systems with Applications, Volume 258 (SCI Zone 1, Top Journal).

  2. Chen, K., Chen, B., Gao, D., Dai, H., et al. (2024). General2Specialized LLMs Translation for E-commerce. The Web Conference (WWW), short paper (CCF-A).

  3. Shen, G., Sun, S., Gao, D., Yang, L., et al. (2023). EdgeNet: Encoder-decoder generative Network for Auction Design in E-commerce Online Advertising. The 32nd ACM International Conference on Information & Knowledge Management (CIKM), (CCF-B).

  4. Gao, D., Ma, Y., Liu, S., Song, M., Jin, L., et al. (2024). FashionGPT: LLM Instruction Fine-tuning with Multiple LoRA-adapter Fusion. Knowledge-Based Systems, Volume 299 (SCI, Top Journal).

  5. Chen, B., Jin, L., Wang, X., Gao, D., et al. (2023). Unified Vision-Language Representation Modeling for E-Commerce Same-Style Products Retrieval. Industry Track of The Web Conference (WWW), (CCF-A).

  6. Mei, X., Yang, L., Jiang, Z., Cai, X., Gao, D., et al. (2024). An Inductive Reasoning Model Based on Interpretable Logical Rules Over Temporal Knowledge Graphs. Neural Networks, Volume 174, Pages (SCI Zone 1, Top Journal).

  7. Liang, Z., Chen, B., Ran, Z., Wang, Z., Gao, D., et al. (2024). Self-Renewal Prompt Optimizing with Implicit Reasoning. The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP) findings (CCF-A).

  8. Yang, Z., Gao, H., Gao, D., Yang, L., et al. (2024). MLoRA: Multi-Domain Low-Rank Adaptive Network for CTR Prediction. The 18th ACM Conference on Recommender Systems (RecSys), (CCF-B).

  9. Zhang, X., Wang, D., Gao, D., Jiang, W., et al. (2022). Revisiting Cold-Start Problem in CTR Prediction: Augmenting Embedding via GAN. The 31st ACM International Conference on Information & Knowledge Management (CIKM), (CCF-B).

  10. Zhang, F., Zhang, Z., Gao, D., Zhuang, F., et al. (2022). Mind the Gap: Cross-lingual Information Retrieval with Hierarchical Knowledge Enhancement. The 36th AAAI Conference on Artificial Intelligence (AAAI), (CCF-A).