Guojun Wu | Civil Engineering | Best Researcher Award

Mr. Guojun Wu | Civil Engineering | Best Researcher Award

Professor at Chinese Academy of Sciences, China

Professor Guojun Wu is a distinguished researcher in geotechnical and underground engineering, serving at the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences in Wuhan, China. With over two decades of impactful academic and industry contributions, he specializes in underground engineering disaster mechanisms and support control technologies. He has led 14 completed and 3 ongoing research projects, authored 78 peer-reviewed publications, published 4 books, and holds 37 patents (with 4 pending). He actively contributes to the advancement of tunnel safety and sustainable underground infrastructure development.

Publication Profileย 

Scopus

Educational Background ๐ŸŽ“

  • Bachelorโ€™s Degree (2001): Engineering Mechanics, Wuhan University, China

  • Masterโ€™s Degree (2003โ€“2006): Geotechnical Engineering, Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences

  • Ph.D. Degree (2006โ€“2009): Geotechnical Engineering, Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences

Professional Experience ๐Ÿ’ผ

  • Current Position: Professor, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences

  • Editorial Roles:

    • Editorial Board Member, International Journal of Mining Science and Technology

    • Guest Editor, Advances in Civil Engineering

  • International Collaboration:

    • Research on Boom Clay with Belgian Nuclear Research Center

    • Visiting Scholar at Lorrain University, France

  • Consultancy Projects: Led 6 industry projects

  • Professional Affiliations:

    • Director, Underground Engineering Branch, Chinese Society of Rock Mechanics and Engineering

    • Director, Hubei Underground Engineering Society

Research Interests ๐Ÿ”ฌ

  • Geotechnical Engineering

  • Underground Engineering

  • Tunnel Safety and Deformation Control

  • Rock Mechanics

  • Dynamic Stress Testing

  • Support Control Technologies for Steeply Inclined and Squeezing Rock Tunnels

Awards and Honors๐Ÿ†โœจ

  • Nominee for the Global Innovation Technologist Awards โ€“ Best Researcher Award

  • Recognized for proposing the dynamic stress testing method for soft rock and a buffer support design method for asymmetric deformation in tunnels, both adopted in deep coal mine projects.

Conclusion๐ŸŒŸ

Professor Guojun Wu stands as a leading figure in the field of underground geotechnical engineering, with innovations that have significantly improved safety and design in high-risk environments. His extensive publication record, interdisciplinary collaborations, and patented technologies position him as a prime candidate for the Best Researcher Award. His work demonstrates practical impact, academic rigor, and global collaboration, making him an invaluable contributor to civil engineering and underground infrastructure sciences.

Publications ๐Ÿ“š

๐Ÿ”ฌ Journal Article | ๐Ÿ†“ Open Access | ๐Ÿ—“๏ธ 2025 | ๐Ÿ”ข 0 citations
Li, Y., Wu, G., Chen, W., Yuan, J., & Huo, M. (2025). Laboratory model tests and unstable collapse analysis of SPB shield machine tunnelling in saturated sand. Tunnelling and Underground Space Technology.
๐Ÿ“Œ Focus: Collapse behavior during shield machine tunneling in saturated sand.


๐Ÿ”ฌ Journal Article | ๐Ÿ†“ Open Access | ๐Ÿ—“๏ธ 2025 | ๐Ÿ”ข 0 citations
Huo, M., Chen, W., Yuan, J., Li, Y., & Liu, Y. (2025). Experimental investigation and limit analysis of shield tunnel face failure mechanism in sand. Underground Space (China).
๐Ÿ“Œ Focus: Tunnel face failure mechanism under sandy conditions.


๐Ÿ”ฌ Journal Article | ๐Ÿ†“ Open Access | ๐Ÿ—“๏ธ 2025 | ๐Ÿ”ข 0 citations
Wen, C., Jia, S., Fu, X., & He, H. (2025). Semi-analytical assessment of dynamic sealing capacity of underground gas storage: A case of Songliao Basin, Northeastern China. Journal of Rock Mechanics and Geotechnical Engineering.
๐Ÿ“Œ Focus: Sealing effectiveness in underground gas reservoirs.


๐Ÿ”ฌ Journal Article | ๐Ÿ—“๏ธ 2025 | ๐Ÿ”ข 1 citation
Yu, J., Zhang, Z., Wu, G., Li, X., & Tian, H. (2025). Investigation on asymmetric dynamic response characteristics of anchored surrounding rock under blasting excavation of inclined layered rock tunnel. Canadian Geotechnical Journal.
๐Ÿ“Œ Focus: Response of surrounding rock under dynamic blasting loads.


๐Ÿ”ฌ Journal Article | ๐Ÿ—“๏ธ 2024 | ๐Ÿ”ข 1 citation
Shu, X., Chen, W., Qiu, X., Wu, G., & Tian, Y. (2024). Anchorage mechanism and parametric analysis of a novel interface-shear-stress-dispersing bolt. Tunnelling and Underground Space Technology.
๐Ÿ“Œ Focus: New bolt design for stress dispersion in tunneling.


๐Ÿ”ฌ Journal Article | ๐Ÿ—“๏ธ 2024 | ๐Ÿ”ข 2 citations
Li, Y., Wu, G., Chen, W., Huo, M., & Liu, Y. (2024). Laboratory experimental study of the forming and failure mechanisms of soil arching during EPBS tunnelling in sand. Engineering Failure Analysis.
๐Ÿ“Œ Focus: Soil arching effects during Earth Pressure Balance Shield (EPBS) tunneling.


๐Ÿ”ฌ Journal Article | ๐Ÿ—“๏ธ 2024 | ๐Ÿ”ข 1 citation
Li, Y., Wu, G., Chen, W., Yuan, J., & Huo, M. (2024). Influence of confined water on the limit support pressure of tunnel face in weakly water-rich strata. Journal of Central South University.
๐Ÿ“Œ Focus: Impact of water content on tunnel face stability.


Manas Ranjan Sethi | ECE | Best Researcher Award

Mr. Manas Ranjan Sethi | ECE | Best Researcher Award

Research Scholar at NIT Silchar, India

Manas Ranjan Sethi is a dedicated academic professional currently pursuing a Ph.D. in Electronics and Instrumentation Engineering at NIT Silchar, with a strong focus on machine learning applications in fault diagnosis and energy systems. He holds an M.Tech in Electronics & Telecommunication from BPUT, Odisha and has over 12 years of teaching experience, having worked as an Assistant Professor at Gandhi Institute for Technology (GIFT) and as a Lecturer at Koustuv Institute of Self Domain, Bhubaneswar. His research interests include machine learning, signal processing, and sustainable energy systems, particularly in wind turbine diagnostics and emotion recognition using EEG signals. Manas has contributed to numerous journals, conferences, and book chapters, and he has earned distinctions such as qualifying CBSE-UGC NET and GATE. He is also skilled in technical tools, enjoys singing, and has a passion for reading.

Publication Profile :ย 

Scopus

 

๐ŸŽ“ Educational Background :

Manas Ranjan Sethi is currently pursuing a Ph.D. in Electronics and Instrumentation Engineering at NIT Silchar (since March 2020). He holds an M.Tech in Electronics & Telecommunication (Specialization in Communication Engineering) from BPUT, Odisha (2012), with a CGPA of 8.20. He completed his B.E. in Electronics & Telecommunication from BPUT, Odisha, in 2006, securing a 62.19%. Additionally, he completed his +2 Science and Matriculation from MP Board, Madhya Pradesh.

๐Ÿ’ผ Professional Experience :

Manas has a rich academic career spanning over 12 years. He served as an Assistant Professor in the Electronics & Communication Engineering Department at Gandhi Institute for Technology (GIFT), Bhubaneswar, from November 2013 to March 2020. Prior to that, he worked as a Lecturer in the Electronics & Telecommunication Engineering Department at Koustuv Institute of Self Domain, Bhubaneswar, from July 2007 to November 2013. He has a strong foundation in teaching and mentoring students in the field of Electronics and Communication Engineering.

๐Ÿ“š Research Interests :ย 

Manas’s research interests lie in the domains of Machine Learning, Signal Processing, and Fault Diagnosis. His work focuses on vibration signal-based diagnostics and energy extraction using wind turbines. He is passionate about leveraging machine learning techniques for predictive maintenance and condition monitoring. His recent research includes the application of meta-classifiers for diagnosing wind turbine blade faults and exploring emotion recognition through EEG signals.

๐Ÿ†Achievements & Certifications :

Manas has earned several academic distinctions, including qualifying the CBSE-UGC NET (Electronic Science) in July 2018, and securing GATE scores of 260 (2016) and 218 (2011) in Electronics and Communication. He has also attended and contributed to various seminars, workshops, and short-term courses in fields such as VLSI Design, Microwave Filters, and Adaptive Signal Processing.

๐Ÿ“ Publication Top Notes :

  • Sethi, M. R., Subba, A. B., Faisal, M., Sahoo, S., & Koteswara Raju, D. (2024). Fault diagnosis of wind turbine blades with continuous wavelet transform based deep learning model using vibration signal. Engineering Applications of Artificial Intelligence, 138, 109372.
  • Sethi, M. R., Sahoo, S., Dhanraj, J. A., & Sugumaran, V. (2023). Vibration Signal-Based Diagnosis of Wind Turbine Blade Conditions for Improving Energy Extraction Using Machine Learning Approach. Smart and Sustainable Manufacturing Systems, 7(1), 14โ€“40.
  • Chatterjee, S., Sethi, M. R., & Asad, M. W. A. (2016). Production phase and ultimate pit limit design under commodity price uncertainty. European Journal of Operational Research, 248(2), 658โ€“667.
  • Sethi, M. R., Parhi, S. S., Sahoo, S., Sugumaran, V., & Mohanty, S. R. (2023). Fault Diagnosis of Wind Turbine Blades Through Vibration Signal Using Filtered Cultivation Data: A Comparative Study. Proceedings of the 2023 IEEE Region 10 Symposium, TENSYMP 2023.
  • Kar, P., Hazarika, J., & Sethi, M. R. (2023). A Comparative Study between Supervised and Unsupervised Techniques for Two Class Emotion Recognition using EEG. Proceedings of the 2023 IEEE 8th International Conference for Convergence in Technology, I2CT 2023.
  • Banala, H. S., Sahoo, S., Sethi, M. R., & Sharma, A. K. (2023). Fault Diagnosis in Wind Turbine Blades Using Machine Learning Techniques. In R. Doriya, B. Soni, A. Shukla, & X. Z. Gao (Eds.), Machine Learning, Image Processing, Network Security and Data Sciences (Lecture Notes in Electrical Engineering, Vol. 946), 401โ€“411. Springer, Singapore.
  • Sethi, M. R., Sahoo, S., Kanoongo, S., & Hemasudheer, B. (2022). A Comparative Study on Diagnosing Wind Turbine Blade Fault Conditions using Rule Classifier. Proceedings of the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET 2022), 1โ€“6. doi: 10.1109/ICEFEET51821.2022.9848401.
  • Sethi, M. R., Hemasudheer, B., Sahoo, S., & Kanoongo, S. (2022). A Comparative Study on Diagnosing Wind Turbine Blade Fault Conditions using Vibration Data through META Classifiers. Proceedings of the 2022 4th International Conference on Energy, Power, and Environment (ICEPE 2022), 1โ€“5. doi: 10.1109/ICEPE55035.2022.9798026.

 

 

 

ABLA CHAOUNI BENABDELLAH | Engineering | Best Researcher Award

Assist. Prof. Dr. ABLA CHAOUNI BENABDELLAH | Engineering | Best Researcher Award

BEST RESEARCHER at International University of rabat, Morocco

Abla Chaouni Benabdellah is an Assistant Professor of Supply Chain Management and Information Systems at Rabat Business School, International University of Rabat (UIR). She holds a Ph.D. in Industrial Engineering from Moulay Ismail University, Meknes, and a Masterโ€™s in Mathematics and Statistics from Mohamed V University, Rabat. With extensive teaching experience across various institutions including EUROMED University and Private University of Fez, she specializes in project management, risk management, and supply chain strategies.

Publication Profile :ย 

Scopus

๐ŸŽ“ Educational Background :

  • Ph.D. in Industrial Engineering (2016 โ€“ 2019), Moulay Ismail University, ENSAM, Meknes
  • Master in Mathematics and Statistics (2012 โ€“ 2014), Mohamed V University, Rabat
  • Bachelor in Applied Mathematics (2009 โ€“ 2012), Moulay Ismail University, Faculty of Science, Meknes
  • Baccalaureate in Mathematics (2008 โ€“ 2009), Moulay Ismail College, Meknes

๐Ÿ’ผ Professional Experience :

  • Assistant Professor of Supply Chain Management & Information Systems (Since 2022), Rabat Business School, International University of Rabat (UIR), Rabat
  • Human Resources Consultant (2021), Expert Human Capital (EHC), Casablanca
  • Professor (2020), School of Digital Engineering and Artificial Intelligence (EIDIA), EUROMED University, Fez
  • Professor (2020), Private University of Fez, Fez
  • Seminar Presenter (2020), “Holonic Multi-Agent Systems for Decision Making -Application to Knowledge Management-“, ENSAM, Meknรจs
  • Doctoral Course Instructor (2019), Statistical Modeling with R Software, ENSAM-Meknรจs
  • Coordinator (2018), Artificial Intelligence and Data Science Master, SUPMTI, Meknes
  • Professor (2016), Higher School of Management, Telecommunications and IT (SUPMTI), Meknes

๐Ÿ“š Research Interests :ย 

  • Supply Chain Management
  • Industrial Engineering
  • Digital Supply Chains
  • Blockchain Technology
  • Artificial Intelligence and Data Science
  • Statistical Modeling

๐Ÿ“ Publication Top Notes :

  1. Blockchain Technology in Supply Chains: Discusses blockchainโ€™s role in enhancing digital supply chains and evaluates implementation barriers.
  2. Big Data Analytics in Supplier Selection: Explores a multi-agent system for supplier selection using big data analytics.
  3. Smart Product Design and Digital Agility: Develops an ontology for managing agility in digital product design.
  4. Blockchain and Smart Contracts in Automotive Supply Chains: Examines how blockchain and smart contracts can optimize automotive supply chains.
  5. Medical Waste Management Optimization: A multi-agent system approach for improving medical waste management.
  6. Sustainable Supplier Selection in Circular Economy: Uses an ontology-based model to improve supplier selection under a circular economy framework.
  7. Environmental Supply Chain Risk Management: Proposes a data mining framework for managing supply chain risks in Industry 4.0.
  8. Lean and Green Practices in Supply Chains: Integrates lean and green practices to enhance sustainable and digital supply chain performance.
  9. Digital Technologies and Circular Economy: Investigates how digital technologies support sustainable supply chain management post-COVID-19.
  10. Circular Digital Supply Chain Design: Focuses on sustainable design practices within digital supply chains.
  11. Supplier Selection Ontology: Develops an ontology for effective supplier selection in digital supply chains.
  12. Intersection of Design for X and Business Strategies: Analyzes the integration of design techniques and business strategies for product lifecycle management.
  13. Knowledge Discovery for Sustainability: Discusses methods for enhancing sustainability through knowledge discovery in design processes.