Qiang Li | Environmental Science | Excellence in Research

Mr. Qiang Li | Environmental Science | Excellence in Research

Professor at Wuhan Textile University, China

Qiang Li, a researcher at Wuhan Textile University, is recognized for his expertise in environmental engineering, particularly wastewater treatment. His contributions to sustainable water management through innovative adsorption techniques, advanced oxidation processes (AOPs), and the development of metal-doped biochar composites have positioned him as a leading figure in his field. He holds a PhD from Nanjing University and has a prolific publication record with significant work in wastewater treatment and environmental remediation. His work aims to address global environmental challenges, focusing on the degradation of harmful chemicals in water, such as antibiotics and industrial pollutants. He is an active participant in various academic and professional organizations, adding to his influence in the scientific community.

Professional Profile

Education:

Qiang Li completed his PhD in Environmental Engineering at Nanjing University (2013-2016) under the supervision of Professor Aimin Li. His doctoral research centered on innovative materials and processes for wastewater treatment, focusing on adsorption technologies and catalytic degradation. He also holds a background in environmental engineering, equipping him with the knowledge and skills to contribute to sustainable solutions for water purification and pollution control. His education has provided a solid foundation for his career in both academic research and practical applications in environmental engineering.

Professional Experience:

Dr. Qiang Li serves as a faculty member at Wuhan Textile University, where he leads research projects and supervises graduate students in environmental engineering. His professional experience includes extensive work in wastewater treatment, focusing on developing new materials and processes for removing pollutants from water. In addition to his academic role, he is involved in evaluating graduate and undergraduate theses as an expert for the Degree Center of the Ministry of Education. His involvement in various professional organizations, including the China Textile Industry Association and the China Materials Research Society, further highlights his broad engagement in the scientific community.

Research Interests:

Qiang Li’s research interests are primarily focused on advanced wastewater treatment technologies. His work includes developing metal-biochar composites for the degradation of pharmaceuticals and other pollutants, particularly through activated persulfate oxidation. He is also interested in the preparation of novel adsorbents, including biochar and resin-based materials, and their applications in water purification. His innovative research aims to tackle persistent environmental issues, such as antibiotic contamination and industrial wastewater, by improving existing treatment methods and introducing more effective, sustainable alternatives.

Awards and Honors:

Dr. Qiang Li has received recognition for his contributions to environmental research and engineering. He is a valued expert for thesis evaluations at the Degree Center of the Ministry of Education and the Hubei Science and Technology Department. His inclusion in various expert databases, such as the Wuhan Science and Technology Expert Database, demonstrates his professional standing. Additionally, his active participation in organizations like the China Materials Research Society and the China Textile Industry Association highlights his respected position in the scientific community. His work is also published in high-impact journals, further attesting to his academic and research excellence.

Conclusion:

Qiang Li is a distinguished researcher in the field of environmental engineering, specializing in wastewater treatment technologies and sustainable water purification methods. His educational background, professional expertise, and contributions to advancing the understanding of pollutant degradation make him an ideal candidate for recognition. His continuous work in developing novel materials for water treatment showcases his commitment to addressing global environmental challenges, making him an asset to both academic and professional communities. Dr. Li’s innovative approaches and impactful research ensure that he remains at the forefront of environmental engineering, with the potential to influence significant positive change in water quality management.

Publication Top Notes

  1. Efficient degradation of carbamazepine by Cu-Fe bimetallic composite carbon derived from the waste cation exchange resins: Mechanism, ecotoxicity, and continuous flow catalysis
    • Authors: Li, Q., Zong, X., Li, H., Ye, Y., Pan, F.
    • Year: 2025
    • Journal: Separation and Purification Technology
    • Citations: 1
  2. Copper-doped orange peel biochar activated peroxydisulfate for efficient degrading tetracycline: The critical role of C-OH and Cu
    • Authors: Li, H., Sun, H., Li, Q., Ye, Y., Pan, F.
    • Year: 2024
    • Journal: Environmental Research
    • Citations: 0
  3. Efficient degradation of tetracycline by Mn(III)-microbial complexes mediated by mnOx@ACF in sequencing batch reactors: performance, mechanism, and effect on microbial community structure
    • Authors: Zhou, H., Xiao, L., Deng, Y., Zhang, Y., Pan, F.
    • Year: 2024
    • Journal: Water Science and Technology
    • Citations: 0
  4. Sponge-based FeS activated persulfate coupled with biodegradation for highly efficient removal of tetracycline: Batch and column validation
    • Authors: Mei, S., Han, M., Hao, J., Wu, Z., Pan, F.
    • Year: 2024
    • Journal: Journal of Water Process Engineering
    • Citations: 0
  5. Relying on free radical degradation of cephalexin by novel Cu1Co2@C catalyzed by permonosulfate: Mechanism and degradation pathways
    • Authors: Zong, X., Li, X., Wu, J., Li, Q., Pan, F.
    • Year: 2024
    • Journal: Journal of Water Process Engineering
    • Citations: 2
  6. Phytic acid pre-modulated and Fe/N co-doped biochar derived from ramie fiber to active persulfate for efficient degradation of tetracycline via radical and non-radical pathways
    • Authors: Deng, Y., Xiao, L., Zhou, H., Ye, Y., Pan, F.
    • Year: 2024
    • Journal: Separation and Purification Technology
    • Citations: 7
  7. Restudy of Aidelaisi technology and heritage | 新疆和田艾德莱斯工艺与传承再研究
    • Authors: Halimire, Y., Li, Q., Xiakeer, S.
    • Year: 2024
    • Journal: Fangzhi Gaoxiao Jichukexue Xuebao
    • Citations: 0
  8. One-step strategy for efficient Cr(VI) removal via phytate modified zero-valent iron: Accelerated electron transfer and enhanced coordination effect
    • Authors: Gan, R., Ye, Y., Zhan, Z., Li, Q., Pan, F.
    • Year: 2024
    • Journal: Journal of Hazardous Materials
    • Citations: 12
  9. Highly efficient adsorption of ciprofloxacin from aqueous solutions by waste cation exchange resin-based activated carbons: Performance, mechanism, and theoretical calculation
    • Authors: Li, Q., Li, H., Zong, X., Ye, Y., Pan, F.
    • Year: 2024
    • Journal: Science of the Total Environment
    • Citations: 12
  10. Enhanced decomplexation of Cu(II) complexes and Cu removal by the nFe3O4/persulfate coupled microbial system: Synergistic effect, validation, and mechanism
    • Authors: Gan, R., Wang, L., Zeng, Z., Ye, Y., Pan, F.
    • Year: 2024
    • Journal: Separation and Purification Technology
    • Citations: 2

 

Wenhui Shi | Ecology | Best Researcher Award

Dr. Wenhui Shi | Ecology | Best Researcher Award

Asociate professor of Zhejiang A&F University, China

🌿 Dr. Wenhui Shi is a dedicated forestry expert with a Ph.D. in Agronomy and extensive research experience in plant-microbe-soil interactions and forest cultivation. As a Master’s supervisor at Zhejiang A&F University, Dr. Shi has led groundbreaking research on bamboo forests and tree physiology, contributing to advancements in sustainable forest management. 📚🔬

Publication Profile : 

Scopus

Educational Background :

Dr. Shi earned his Bachelor’s degree in Forestry from Northwest A&F University in 2011. He then pursued a combined Master’s and Ph.D. program at Beijing Forestry University, completing his Ph.D. in Agronomy in 2018. His doctoral research focused on the impact of seed nutrient variability on the quality and afforestation effectiveness of Quercus variabilis seedlings.

Professional Experience :

Since joining Zhejiang A&F University in 2018, Dr. Shi has been dedicated to advancing knowledge in forest cultivation. He has conducted extensive research on the relationships between tree root characteristics, soil nutrient cycling, and microbial dynamics. His work has particularly emphasized the ecological functions of bamboo forests, exploring the mechanisms of phosphorus uptake and the role of functional soil microorganisms. Dr. Shi has led several key research projects, including those funded by the National Key R&D Program for Young Scientists and the National Natural Science Foundation of China.

Research Interests : 

Dr. Shi’s research interests include plant-microbe-soil interactions, plant nutrient physiology, tree stress physiology, and tree seedling cultivation. He has made significant contributions to understanding the complex interactions within forest ecosystems, particularly in the context of bamboo cultivation and nutrient management.

Publication Top Notes :

  1. Chengjian Hong, Ning Gao, Zhulei Wu, Yuanchun Yu, Lei Jiang, Yeqing Ying, Wenhui Shi (2024). Changes in soil ammonium-to-nitrate ratio and nutritional symbionts enhance Phyllostachys edulis suppression of heterogeneous competitors in shade. Geoderma, 449, 117008.
  2. Yijing Xing, Fucheng Wang, Sirui Yu, Ying Zhu, Yeqing Ying, Wenhui Shi (2024). Enhancing Phyllostachys edulis seedling growth in phosphorus-deficient soil: complementing the role of phosphate-solubilizing microorganisms with arbuscular mycorrhizal fungi. Plant and Soil, 497, 449-466.
  3. Ruiqian Zhu, Ning Gao, Jiali Luo, Wenhui Shi (2024). Genome and transcriptome analysis of the Torreya grandis WRKY gene family during seed development. Genes, 15(3), 267.
  4. Chengjian Hong, Wenhui Shi, Shulei Wu, Yuelin He, Yeqing Ying (2023). The inferior root plasticity of Phoebe chekiangensis and Torreya grandis seedlings intercropped with Phyllostachys edulis leads to worse plant performance than monocultures under shade conditions. Plant and Soil, 488, 305-324.
  5. Jiali Luo, Zhihui Liu, Jiawen Yan, Wenhui Shi, Yeqing Ying (2023). Genome-Wide Identification of SPX Family Genes and Functional Characterization of PeSPX6 and PeSPX-MFS2 in Response to Low Phosphorus in Phyllostachys edulis. Plants, 12(7), 1496.
  6. Yuelin He, Yilei Tang, Lin Lin, Wenhui Shi, Yeqing Ying (2023). Differential responses of phosphorus accumulation and mobilization in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz) seedlings to short-term experimental nitrogen deposition. Annals of Forest Science, 80, 10.
  7. Wenhui Shi, Yijing Xing, Ying Zhu, Ning Gao, Yeqing Ying (2022). Diverse responses of pqqC– and phoD-harbouring bacterial communities to variation in soil properties of Moso bamboo forests. Microbial Biotechnology, 15(7), 2097-2111.
  8. Yijing Xing, Wenhui Shi, Ying Zhu, Fucheng Wang, Hangyan Wu, Yeqing Ying (2021). Screening and activity assessing of phosphorus availability improving microorganisms associated with bamboo rhizosphere in subtropical China. Environmental Microbiology, 23(10), 6074-6088.
  9. Wenhui Shi, Lin Lin, Shanlu Shao, Anguo He, Yeqing Ying (2020). Effects of simulated nitrogen deposition on Phyllostachys edulis (Carr.) seedlings under different watering conditions: is seedling drought tolerance related to nitrogen metabolism? Plant and Soil, 448, 539-552.
  10. Wenhui Shi, Pedro Villar-Salvador, Guolei Li, Xiaoxu Jiang (2019). Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings. Annals of Forest Science, 76, 22.
  11. Wenhui Shi, Steven C. Grossnickle, Guolei Li, Shuchai Su, Yong Liu (2019). Fertilization and irrigation regimes influence on seedling attributes and field performance of Pinus tabuliformis Carr. Forestry, 92, 97-107.
  12. Fangfang Wan, Amy L. Ross-Davis, Wenhui Shi, Christopher Weston, Xiehai Song, Xiaochao Chang, Anthony S. Davis, Yong Liu, Fei Teng (2019). Subirrigation effects on Larch seedling growth, root morphology, and media chemistry. Forests, 10, 38.
  13. Wenhui Shi, Pedro Villar-Salvador, Douglass F. Jacobs, Guolei Li, Xiaoxu Jiang (2018). Simulated predation of Quercus variabilis acorns impairs nutrient remobilization and seedling performance irrespective of soil fertility. Plant and Soil, 423, 295-306.
  14. Wenhui Shi, Mark Bloomberg, Guolei Li, Liming Jia, Shuchai Su (2017). Combined effects of cotyledon excision and nursery fertilization on root growth, nutrient status, and outplanting performance of Quercus variabilis container seedlings. PLOS ONE, 12, e0177002.