Ashish Ranjan Dash | Engineering | Best Researcher Award

Dr. Ashish Ranjan Dash | Engineering | Best Researcher Award

Associate Professor at Centurion University of Technology and Management | India

Dr. Ashish Ranjan Dash is a highly accomplished academic and researcher in the field of electrical engineering, specializing in power electronics, multilevel inverters, and power quality improvement. With a proven track record in research, teaching, and project leadership, he has significantly contributed to advancements in smart infrastructure, renewable energy systems, and IoT-enabled agricultural automation. He has also played a pivotal role in supervising doctoral students, developing innovative solutions for industrial applications, and leading consultancy projects for technology-driven agriculture and smart systems.

Publication Profile 

Scopus

Google Scholar

Educational Background 

Dr. Dash earned his Ph.D. in Power Electronics from the National Institute of Technology (NIT) Rourkela, focusing on cascaded multilevel inverter-based shunt active filters under varying grid voltage conditions. He also holds an M.Tech. in Power Control and Drives from NIT Rourkela, where his dissertation explored control strategies for grid-connected inverter systems during fault conditions. His academic foundation is further strengthened by a B.Tech. in Electrical Engineering and a Diploma in Electrical Engineering, complemented by a strong record of academic excellence throughout his studies.

Professional Experience 

With over a decade of academic and research experience, Dr. Dash serves as an Associate Professor at Centurion University of Technology and Management, Odisha. His prior roles include research and academic positions in engineering colleges and at the Council of Scientific and Industrial Research. He has held key administrative positions such as Dean and Associate Dean of the School of Engineering and CEO of the Smart Infrastructure Research Center, where he has led interdisciplinary projects integrating IoT, automation, and renewable energy systems.

Research Interests 

His research focuses on power electronics, multilevel inverter design, power quality enhancement, electric vehicle charging infrastructure, smart grid systems, and IoT-enabled automation. He also works extensively on agricultural automation, including polyhouse automation, speed breeding chambers, and plant phenotyping systems. Emerging interests include machine learning applications for plant disease detection, robotics, and smart farming technologies.

Awards and Honors 

Dr. Dash has received multiple accolades, including the Distinguished Achiever Award at the Provost Research Awards and recognition as a session chair at IEEE international conferences. He is the founder of a technology-driven startup and actively engages in professional communities such as the IEEE Power Electronics Society, IEEE Industry Applications Society, and IEEE SIGHT.

Research Skills 

He possesses strong expertise in the design, modeling, and implementation of cascaded multilevel inverters, power quality control algorithms, and renewable energy integration. His skills extend to IoT-based system design, automation technologies, electric vehicle charging systems, and cloud-based agricultural monitoring. He is also an experienced reviewer for several high-impact international journals in power electronics and smart grid applications.

Publications 

A unified control of grid-interactive off-board EV battery charger with improved power quality

Citations: 49

Year: 2022

Reactive power compensation using vehicle-to-grid enabled bidirectional off-board EV battery charger

Citations: 34

Year: 2021

Adaptive LMBP training‐based icosϕ control technique for DSTATCOM

Citations: 33

Year: 2020

Analysis of PI and PR controllers for distributed power generation system under unbalanced grid faults

Citations: 33

Year: 2011

Design and implementation of a cascaded transformer coupled multilevel inverter‐based shunt active filter under different grid voltage conditions

Citations: 24

Year: 2019

Conclusion 

Dr. Ashish Ranjan Dash is a forward-looking researcher and educator whose work bridges advanced power electronics with practical applications in smart infrastructure and agricultural automation. His multidisciplinary expertise, leadership in funded projects, and dedication to mentoring the next generation of engineers make him a valuable contributor to both academia and industry. His continued research promises innovative advancements in electric mobility, renewable energy integration, and intelligent automation systems.

Guojun Wu | Civil Engineering | Best Researcher Award

Mr. Guojun Wu | Civil Engineering | Best Researcher Award

Professor at Chinese Academy of Sciences, China

Professor Guojun Wu is a distinguished researcher in geotechnical and underground engineering, serving at the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences in Wuhan, China. With over two decades of impactful academic and industry contributions, he specializes in underground engineering disaster mechanisms and support control technologies. He has led 14 completed and 3 ongoing research projects, authored 78 peer-reviewed publications, published 4 books, and holds 37 patents (with 4 pending). He actively contributes to the advancement of tunnel safety and sustainable underground infrastructure development.

Publication Profile 

Scopus

Educational Background 🎓

  • Bachelor’s Degree (2001): Engineering Mechanics, Wuhan University, China

  • Master’s Degree (2003–2006): Geotechnical Engineering, Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences

  • Ph.D. Degree (2006–2009): Geotechnical Engineering, Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences

Professional Experience 💼

  • Current Position: Professor, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences

  • Editorial Roles:

    • Editorial Board Member, International Journal of Mining Science and Technology

    • Guest Editor, Advances in Civil Engineering

  • International Collaboration:

    • Research on Boom Clay with Belgian Nuclear Research Center

    • Visiting Scholar at Lorrain University, France

  • Consultancy Projects: Led 6 industry projects

  • Professional Affiliations:

    • Director, Underground Engineering Branch, Chinese Society of Rock Mechanics and Engineering

    • Director, Hubei Underground Engineering Society

Research Interests 🔬

  • Geotechnical Engineering

  • Underground Engineering

  • Tunnel Safety and Deformation Control

  • Rock Mechanics

  • Dynamic Stress Testing

  • Support Control Technologies for Steeply Inclined and Squeezing Rock Tunnels

Awards and Honors🏆✨

  • Nominee for the Global Innovation Technologist Awards – Best Researcher Award

  • Recognized for proposing the dynamic stress testing method for soft rock and a buffer support design method for asymmetric deformation in tunnels, both adopted in deep coal mine projects.

Conclusion🌟

Professor Guojun Wu stands as a leading figure in the field of underground geotechnical engineering, with innovations that have significantly improved safety and design in high-risk environments. His extensive publication record, interdisciplinary collaborations, and patented technologies position him as a prime candidate for the Best Researcher Award. His work demonstrates practical impact, academic rigor, and global collaboration, making him an invaluable contributor to civil engineering and underground infrastructure sciences.

Publications 📚

🔬 Journal Article | 🆓 Open Access | 🗓️ 2025 | 🔢 0 citations
Li, Y., Wu, G., Chen, W., Yuan, J., & Huo, M. (2025). Laboratory model tests and unstable collapse analysis of SPB shield machine tunnelling in saturated sand. Tunnelling and Underground Space Technology.
📌 Focus: Collapse behavior during shield machine tunneling in saturated sand.


🔬 Journal Article | 🆓 Open Access | 🗓️ 2025 | 🔢 0 citations
Huo, M., Chen, W., Yuan, J., Li, Y., & Liu, Y. (2025). Experimental investigation and limit analysis of shield tunnel face failure mechanism in sand. Underground Space (China).
📌 Focus: Tunnel face failure mechanism under sandy conditions.


🔬 Journal Article | 🆓 Open Access | 🗓️ 2025 | 🔢 0 citations
Wen, C., Jia, S., Fu, X., & He, H. (2025). Semi-analytical assessment of dynamic sealing capacity of underground gas storage: A case of Songliao Basin, Northeastern China. Journal of Rock Mechanics and Geotechnical Engineering.
📌 Focus: Sealing effectiveness in underground gas reservoirs.


🔬 Journal Article | 🗓️ 2025 | 🔢 1 citation
Yu, J., Zhang, Z., Wu, G., Li, X., & Tian, H. (2025). Investigation on asymmetric dynamic response characteristics of anchored surrounding rock under blasting excavation of inclined layered rock tunnel. Canadian Geotechnical Journal.
📌 Focus: Response of surrounding rock under dynamic blasting loads.


🔬 Journal Article | 🗓️ 2024 | 🔢 1 citation
Shu, X., Chen, W., Qiu, X., Wu, G., & Tian, Y. (2024). Anchorage mechanism and parametric analysis of a novel interface-shear-stress-dispersing bolt. Tunnelling and Underground Space Technology.
📌 Focus: New bolt design for stress dispersion in tunneling.


🔬 Journal Article | 🗓️ 2024 | 🔢 2 citations
Li, Y., Wu, G., Chen, W., Huo, M., & Liu, Y. (2024). Laboratory experimental study of the forming and failure mechanisms of soil arching during EPBS tunnelling in sand. Engineering Failure Analysis.
📌 Focus: Soil arching effects during Earth Pressure Balance Shield (EPBS) tunneling.


🔬 Journal Article | 🗓️ 2024 | 🔢 1 citation
Li, Y., Wu, G., Chen, W., Yuan, J., & Huo, M. (2024). Influence of confined water on the limit support pressure of tunnel face in weakly water-rich strata. Journal of Central South University.
📌 Focus: Impact of water content on tunnel face stability.