Yousri Kessentini | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr. Yousri Kessentini | Artificial Intelligence | Best Researcher Award

Senior Researcher at Digital research center of Sfax, Tunisia

Assoc. Prof. Dr. Yousri Kessentini is a computer science researcher and Associate Professor at the Digital Research Center of Sfax, Tunisia, where he leads the DeepVision research team. He holds a Ph.D. from the University of Rouen, France, and specializes in deep learning, computer vision, and document image analysis. Dr. Kessentini has coordinated numerous national and international research projects and has received several awards, including honors from NVIDIA and the National Academy of Engineering. He is a certified Deep Learning instructor and an active contributor to the scientific community through publications, supervision, and editorial roles.

Publication Profile 

Scopus

Orcid

Educational Background 

Dr. Kessentini earned his Habilitation in Computer Science from the University of Sfax in 2021. He holds a Ph.D. in Computer Science (2006–2009) and a DEA (postgraduate diploma) in Computer Science (2004) from the University of Rouen, France. He also obtained an engineering diploma in computer science from ENIS in 2003 and completed his secondary education with a Scientific Baccalaureate in Mathematics in 1998.

Professional Experience

Dr. Kessentini has accumulated rich academic and industrial experience over two decades. Since 2022, he has served as Associate Professor and Head of the DeepVision research team at CRNS. From 2017 to 2021, he was a senior researcher at the same center. Between 2013 and 2017, he was an assistant professor at ISIMA University of Monastir. He also held postdoctoral and graduate assistant roles in France, including at ITESOFT/LITIS and the University of Rouen. Since 2018, he has been a certified instructor and ambassador of the NVIDIA Deep Learning Institute, reflecting his leadership in AI education and training.

Research Interests

His research spans a variety of deep learning applications, including document image recognition, handwritten text analysis, multi-script OCR, generative models, and satellite image fusion. Dr. Kessentini also explores the intersection of AI with healthcare, smart cities, and industrial automation. His recent projects involve federated learning for medical imaging, vehicle identity recognition, Arabic script analysis, and human action recognition through remote sensing and video surveillance.

Awards and Honors

Dr. Kessentini has received numerous accolades for his contributions to AI research and innovation. In 2025, he was selected for the prestigious U.S.-Africa Frontiers of Science, Engineering, and Medicine Symposium by the U.S. National Academy of Engineering. He ranked first in Tunisia’s national recruitment competition for associate professors in 2022. He received best student paper awards at ICPR 2020 and MedPRAI 2020 and earned a Jury Recognition Award in Tunisia’s national innovation competition in 2019. His research excellence was also recognized by NVIDIA with a GPU Grant in 2018, the same year he was certified as an official instructor and ambassador.

Publications 

Title: Information extraction from multi-layout invoice images using FATURA dataset

Year: 2025

Title: STF-Trans: A Two-stream SpatioTemporal Fusion Transformer for Very High Resolution Satellites Images

Year: 2024

Title: MSdocTr-Lite: A Lite Transformer for Full Page Multi-script Handwriting Recognition

Year: 2023

Title: Spectral-Temporal Fusion of Satellite Images Via an End-to-End Two-Stream Attention With an Effective Reconstruction Network

Year: 2023

Title: Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwriting Recognition

Year: 2022

Conclusions

Assoc. Prof. Dr. Yousri Kessentini stands out as a leading figure in the fields of artificial intelligence and computer vision. His consistent contributions to scientific innovation, mentorship, and international collaboration have had a significant impact across academia and industry. His work demonstrates not only technical excellence but also a strong commitment to applying AI for societal and industrial benefit. With an impressive track record of publications, project leadership, and academic service, he is highly deserving of recognition in competitive research and innovation awards.

Swati Jaiswal | Deep Learning | Women Researcher Award

Mrs. Swati Jaiswal | Deep Learning | Women Researcher Award

Assistant Professor at DES Pune University, Pune, India

Swati Jaiswal, Ph.D. candidate at VIT Vellore, is an experienced Assistant Professor in Computer Engineering with over 14 years of academic and research expertise. Currently, she is serving at the School of Computer Engineering & Technology, DES Pune University. She has held various teaching and administrative roles across esteemed institutions like PCCOE, ZCOER, and SKNSITS, contributing significantly to academic development and research. Swati’s contributions span diverse fields like Machine Learning, Cybersecurity, Autonomous Vehicles, AI, and IoT, reflected in her numerous publications, patents, and book chapters 📚🔍. Swati’s dedication to research and teaching is complemented by a passion for developing innovative solutions to real-world problems 🤖💡.

Publication Profile : 

Google Scholar

Education🎓

Swati holds a Master’s in Computer Science & Engineering with 86% from RGPV, Bhopal (2012), and a BE in the same discipline with 80% (2009). She is currently pursuing a Ph.D. in the field of AI and Machine Learning at VIT Vellore, under the guidance of Dr. Chandra Mohan B. Her academic journey also includes certifications in various fields like Data Science, Machine Learning, and Software Testing 🎓📜.

Professional Experience💼

Swati began her career as an Assistant Professor at SAMCET Bhopal in 2009, where she coordinated seminars and workshops. Over the years, she worked at several prestigious institutions, including SKNSITS, ZCOER, and PCCOE, contributing to curriculum development, departmental coordination, and research activities. Since June 2024, she has been with DES Pune University, where she continues her academic journey while nurturing the next generation of engineers and researchers. Along with teaching, she has overseen various academic and administrative responsibilities, including time-table coordination, research guidance, and university exams 🏫📊.

Research Interests🔬

Her research primarily focuses on Machine Learning, Artificial Intelligence, Cybersecurity, Autonomous Systems, and Internet of Things (IoT). She has explored deep learning models for real-time systems, especially in autonomous driving, vehicle communication systems, and intelligent robotics. Additionally, Swati is passionate about the application of AI and ML in solving complex real-world problems such as fraud detection, data security, and predictive analytics 💻🔐🚗.

Publications Top Notes📚

  1. Jha, R. K., Kumar, A., Prakash, S., Jaiswal, S., Bertoluzzo, M., Kumar, A., Joshi, B. P., & … (2022). Modeling of the resonant inverter for wireless power transfer systems using the novel MVLT method. Vehicles, 4(4), 1277-1287. [34 citations]
  2. Kachhoria, R., Jaiswal, S., Khairnar, S., Rajeswari, K., Pede, S., Kharat, R., … (2023). Lie group deep learning technique to identify the precision errors by map geometry functions in smart manufacturing. The International Journal of Advanced Manufacturing Technology, 1-12. [12 citations]
  3. Kachhoria, R., Jaiswal, S., Lokhande, M., & Rodge, J. (2023). Lane detection and path prediction in autonomous vehicle using deep learning. In Intelligent edge computing for cyber physical applications (pp. 111-127). [11 citations]
  4. Swati Jaiswal, D. C. M. B. (2017). A survey: Privacy and security to Internet of Things with cloud computing. International Journal of Control Theory and Applications, 10(1), 487-500. [7 citations]
  5. Jaiswal, S., & Rodge, J. (2019). Comprehensive overview of neural networks and its applications in autonomous vehicles. In Computational Intelligence in the Internet of Things (pp. 159-173). [6 citations]
  6. Kati, S., Ove, A., Gotipamul, B., Kodche, M., & Jaiswal, S. (2022). Comprehensive overview of DDOS attack in cloud computing environment using different machine learning techniques. In Proceedings of the International Conference on Innovative Computing. [5 citations]
  7. Raut, R., Jadhav, A., Jaiswal, S., & Pathak, P. (2022). IoT-assisted smart device for blind people. In Intelligent Systems for Rehabilitation Engineering (pp. 129-150). [4 citations]
  8. Jaiswal, S., & Desai, M. (2019). Importance of information security and strategies to prevent data breaches in mobile devices. In Improving Business Performance Through Innovation in Digital Economy (pp. 215-225). [4 citations]
  9. Jaiswal, S., & Chandra, M. B. (2023). An efficient real-time decision-making system for autonomous vehicle using timber chased wolf optimization-based ensemble classifier. Journal of Engineering Science and Technology Review, 16(1), 75-84. [3 citations]
  10. Jaiswal, S., & Balasubramanian, C. M. (2023). An advanced deep learning model for maneuver prediction in real-time systems using alarming-based hunting optimization. International Journal of Advances in Intelligent Informatics, 9(2). [2 citations]
  11. Sorde, C., Jadhav, A., Jaiswal, S., Padwad, H., & Raut, R. (2023). Generative adversarial networks and its use cases. In Generative Adversarial Networks and Deep Learning (pp. 1-11). [2 citations]
  12. Rajeswari, K., Vispute, S., Maitre, A., Kharat, R., Aher, N., Vivekanandan, N., … (2023). Time series analysis with systematic survey on COVID-19 based predictive studies during pandemic period using enhanced machine learning techniques. iJOE, 19(07), 161. [2 citations]
  13. Jadhav, A., Raut, R., Jhaveri, R., Patil, S., Jaiswal, S., Katole, A., … (2021). A device for child safety and security. [2 citations]
  14. Jaiswal, S., Prakash, S., Gupta, N., & Rewadikar, D. (n.d.). Performance optimization in ad-hoc networks. International Journal of Computer Technology and Electronics Engineering. [2 citations]
  15. Jaiswal, S., & Mohan, B. C. (2024). Deep learning-based path tracking control using lane detection and traffic sign detection for autonomous driving. Web Intelligence, 22(2), 185-207. [1 citation]
  16. Raut, R., Jadhav, A., Jaiswal, S., Kathole, A., & Patil, S. (2023). Intelligent information system for detection of COVID-19 based on AI. In Proceedings of 3rd International Conference on Recent Trends in Machine Learning and Artificial Intelligence. [1 citation]
  17. Jaiswal, S., Sarkar, S., & Mohan, C. (2017). COT: Evaluation and analysis of various applications with security for cloud and IoT. In Examining Cloud Computing Technologies through Internet of Things (pp. 251-263). [1 citation]
  18. Prakash, S., Saxena, V., & Jaiswal, S. (2016). Smart grid: Optimized power sharing and energy storage system framework with recent trends and future ahead. In Handbook of Research on Emerging Technologies for Electrical Power Planning and Analysis (pp. 1-12). [1 citation]
  19. Jaiswal, S., Gupta, N., & Shrivastava, H. (2012). Enhancing the features of intrusion detection system by using machine learning approaches. International Journal of Scientific and Research Publications, 166. [1 citation]
  20. Kharat, R. S., Kalos, P. S., Kachhoria, R., Kadam, V. E., Jaiswal, S., Birari, D., … (2023). Thermal analysis of fuel cells in renewable energy systems using generative adversarial networks (GANs) and reinforcement learning. [No citation count]