Chang-Fei Yu | Environmental Science | Best Researcher Award

Dr. Chang-Fei Yu | Environmental Science | Best Researcher Award

Doctor at Anhui University of Science and Technology, China

Yu Chang-Fei is a dedicated researcher focused on developing and analyzing dust-reducing and explosion-suppressing agents for coal mine dust. His work integrates experimental techniques with theoretical analysis to explore solutions for improving safety and reducing hazards in coal mines. He has achieved remarkable academic success and recognition, including winning the National Scholarship for Doctoral Students and receiving multiple honors for his outstanding research contributions.

Publication Profile : 

Scopus

Orcid

Google Scholar

 

🎓 Educational Background :

Ph.D. in Chemical Engineering (Expected Graduation: [Year])
Anhui University of Science and Technology, [Location]
Research focus: Development and mechanism analysis of dust reducing and explosion suppressing agents for coal mine dust.

M.Sc. in Chemical Engineering
Anhui University of Science and Technology, [Location]
Thesis: [Your Thesis Title, if applicable]
Graduated: [Year]

B.Sc. in Chemical Engineering
[Undergraduate University Name], [Location]
Graduated: [Year]

💼 Professional Experience :

Yu Chang-Fei is currently a doctoral candidate, where his research focuses on coal mine safety, particularly dust reduction and explosion suppression. His work blends practical experimental methods with cutting-edge theoretical analysis to develop innovative agents that improve coal mine safety. Through his extensive research and multiple academic achievements, Yu has shown deep expertise in the areas of coal pyrolysis, chemical safety, and industrial hazard prevention.

📚 Research Interests : 

Yu’s primary research interests lie in the development and mechanism analysis of agents designed to reduce dust and suppress explosions in coal mines. He investigates the oxidative pyrolysis characteristics of bituminous coal and the thermal decomposition of chemical agents through advanced experimental methods and computational simulations, such as density functional theory. His work aims to mitigate the risks associated with coal mining by enhancing safety measures and developing effective, sustainable agents.

📝 Publication Top Notes :

  1. Shi, S., Wang, X.-H., Jiang, B., Yu, C.-F., & Ji, B. (2024). Preparation of consolidated dust suppression materials based on pectin: Graft modification experiment and reaction mechanism. ACS Omega, 9(43), 43534–43546.
  2. Liu, S.-H., Wu, K.-F., Xu, R.-J., Yu, C.-F., & Wang, Y. (2024). Studies on the thermal stability and exothermic behaviour of imidazolium-based ionic liquid binary mixture. Journal of Thermal Analysis and Calorimetry, 149(18), 10353–10361.
  3. Zhou, Y., Jiang, B., Yu, C.-F., Yu, H., & Wang, J. (2024). Study on the effect of hydrogen bonding network structure in amphoteric surfactant solution on the wettability of coal dust. Journal of Molecular Liquids, 408, 125305.
  4. Wang, S., Shi, S., Jiang, B., Zhang, Y., & Wang, X.-H. (2024). Influence of surfactant adsorption on coal oxidation and wettability: Experimental discussion and model development. Energy, 297, 131304.
  5. Jiang, B., Li, J.-J., Su, M., Yao, Q., & Ding, D. (2024). Study on flame properties and molecular dynamics of MAP suppression for polyethylene dust explosion. Fuel, 366, 131347.
  6. Jiang, B., Zhang, Y., Zheng, Y., Zhou, Y., & Wang, Y. (2024). Effect of acid-thermal coupling on the chemical structure and wettability of coal: An experimental study. Energy, 294, 130943.
  7. Jiang, B., Ding, D., Su, M., Ji, B., & Hong, H. (2024). Experimental study on the explosion suppression characteristics of polyethylene dust by ammonium polyphosphate. Powder Technology, 437, 119491.
  8. Tao, W., Jiang, B., Zheng, Y., Yu, C.-F., & Wang, X.-H. (2024). Molecular dynamics study on the effect of inorganic salts on the wettability of surfactants on bituminous coal: Sodium dodecyl sulfate and sodium chloride as representatives. Fuel, 359, 130397.
  9. Tao, W., Jiang, B., Zheng, Y., Sun, B., & Wang, J. (2024). Effect of alkyl glycoside surfactant on the explosion characteristics of bituminous coal: Experimental and theoretical discussion. Energy, 288, 129930.
  10. Shi, S., Yu, C.-F., & Wang, S. (2024). Unveiling mechanism of coal miners’ dust prevention behaviour under force field. Iranian Journal of Science (in press).

 

 

 

Gonzalo Pérez Serrano | Artificial photosynthesis | Young Scientist Award

Mr. Gonzalo Pérez Serrano | Artificial photosynthesis | Young Scientist Award

PhD at IMDEA Nanociencia, Spain

Gonzalo Pérez Serrano is an Assistant Researcher at IMDEA Nanoscience in Spain, specializing in ultrafast phenomena at the nanoscale. He holds a Master’s degree in Biotechnology from Universidad Autónoma de Madrid and a Bachelor’s degree in Biology from Universidad Complutense de Madrid. His research focuses on artificial photosynthesis, specifically the design of structural modulators for photosystems, where he studies the impact of protein dynamics on chromophore function.

Publication Profile : 

Orcid

 

🎓 Educational Background :

Gonzalo Pérez Serrano completed his undergraduate degree in Biology at the Universidad Complutense de Madrid in 2022. During his studies, he gained valuable experience at the Veterinary Health Surveillance Centre (VISAVET), specializing in molecular techniques such as genetic material extraction and purification, molecular diagnosis, and data analysis. His Bachelor’s thesis focused on the molecular detection of Rickettsia bacteria in ticks from wild animals in the Madrid region. After completing his Bachelor’s, Gonzalo pursued a Master’s degree in Biotechnology at the Universidad Autónoma de Madrid (2022-2023), where he conducted his Master’s thesis on the design of artificial photosystems, under the supervision of Dr. Sara Hernández Mejías at IMDEA Nanoscience.

💼 Professional Experience :

Following the completion of his Master’s, Gonzalo Pérez Serrano was appointed as an Assistant Researcher at IMDEA Nanoscience in October 2023. He has been involved in various significant research projects, including a project funded by the LaCaixa Foundation focused on photochemical energy conversion using biohybrids with proteins and nanoclusters, and another research grant from the BBVA Foundation on optimized photochemical conversion. His work spans artificial photosynthesis, light energy conversion, and nanotechnology, contributing to a deeper understanding of the mechanistic role of protein dynamics in chromophore function. Prior to his current position, he gained practical research experience as a trainee student at IMDEA Nanoscience while completing both his Bachelor’s and Master’s degrees.

📚 Research Interests : 

Gonzalo’s research interests are centered on the fields of artificial photosynthesis, light energy conversion, and nanotechnology. He focuses on the study of protein engineering and physical chemistry, with a particular emphasis on pump-probe spectroscopy. His work aims to advance our understanding of how proteins and chromophores interact to enhance light-harvesting efficiency. He is passionate about using cutting-edge techniques in nanoscience to develop sustainable and efficient systems for energy conversion. 🌱🔬💡

📝 Publication Top Notes :

  1. Serrano, G. P., Echavarría, C. F., & Mejias, S. H. (2024). Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Science, 33(10). https://doi.org/10.1002/pro.5164