Sushil Kumar | Machine Learning | Best Researcher Award

Dr. Sushil Kumar | Machine Learning | Best Researcher Award

Assistant Professor at Central University of Haryana, India

Dr. Sushil Kumar is an Assistant Professor in the Department of Computer Science and Engineering at the Central University of Haryana, having joined on December 2, 2022. With a rich experience of 19 years in teaching, he specializes in Information Retrieval, Machine Learning, and Distributed Computing. Dr. Kumar holds a B.Tech, M.Tech, and Ph.D. in Computer Science and Engineering. He has published 7 papers in international journals and 1 book chapter, and has guided 16 Master’s students in their research. He has actively participated in 25 seminars and conferences, and organized 5 academic events. In addition, he has been recognized with the Youth Red Cross Award from the Honorable Governor of Haryana for 2016-17 and 2019-20. Currently, he also serves as the NBA Co-ordinator and NAAC Co-ordinator at the university.

Publication Profile : 

Google Scholar

Education 🎓

Dr. Sushil Kumar holds a B.Tech, M.Tech, and Ph.D. in Computer Science and Engineering, equipping him with a solid foundation in the field of technology and research.

Professional Experience💼

Assistant Professor at Central University of Haryana since 02-12-2022
With 19 years of teaching experience, Dr. Sushil Kumar has been dedicated to nurturing young minds in the area of computer science. His expertise in Information Retrieval, Machine Learning, and Distributed Computing has shaped his teaching methodology. While his focus remains on academia, he has not been involved in industry work yet. He has also taken up additional responsibilities as NBA Co-ordinator and NAAC Co-ordinator, ensuring quality assurance and accreditation standards in the department.

Research Interests 🔬

🔍 Information Retrieval
🤖 Machine Learning
🌐 Distributed Computing

Dr. Sushil Kumar’s research interests are focused on the areas of Information Retrieval, where he aims to improve search and data retrieval systems, Machine Learning, and the development of efficient algorithms for Distributed Computing systems.

Publications Top Notes 📚

  1. Kumar, S., Aggarwal, M., Khullar, V., Goyal, N., Singh, A., & Tolba, A. (2023). Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification. Agriculture, 13(5), 23.
  2. Kumar, S., & Bhatia, K. K. (2020). Semantic similarity and text summarization-based novelty detection. SN Applied Sciences, 2(3), 332.
  3. Kumar, S., & Chauhan, N. (2012). A context model for focused web search. International Journal of Computer Technology, 2(3).
  4. Gupta, C., Khullar, V., Goyal, N., Saini, K., Baniwal, R., Kumar, S., & Rastogi, R. (2023). Cross-Silo, Privacy-Preserving, and Lightweight Federated Multimodal System for the Identification of Major Depressive Disorder Using Audio and Electroencephalogram. Diagnostics, 14(1), 43.
  5. Kumar, S., & Bhatia, K. K. (2019). Clustering-based approach for novelty detection in text documents. Asian Journal of Computer Science and Technology, 8(2), 116-121.
  6. Dasari, K., Srikanth, V., Veramallu, B., Kumar, S. S., & Srinivasulu, K. (2014). A novelty approach of symmetric encryption algorithm. Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES).
  7. Kumar, S., & Anand, S. (2006). Implementing Shared Data Services (SDS): A Proposed Approach. 2006 IEEE International Conference on Services Computing (SCC’06), 365-372.
  8. Singh, S., Kundra, H., Kundra, S., Pratima, P. V., Devi, M. V. A., Kumar, S., & Hassan, M. (2024). Optimal trained ensemble of classification model for satellite image classification. Multimedia Tools and Applications, 1-22.
  9. Kumar, S., & Bhatia, K. K. (2018). Document-to-Sentence Level Technique for Novelty Detection. In Speech and Language Processing for Human-Machine Communications: Proceedings (pp. xx-xx).
  10. Chawla, M., Panda, S. N., Khullar, V., Kumar, S., & Bhattacharjee, S. B. (2024). A lightweight and privacy-preserved federated learning ecosystem for analyzing verbal communication emotions in identical and non-identical databases. Measurement: Sensors, 34, 101268.
  11. Kumar, S. S. (2023). System Oriented Social Scrutinizer: Centered Upon Mutual Profile Erudition. International Journal on Recent and Innovation Trends in Computing and Communication, 11(9), 2007–2017.
  12. Kumar, S. (2021). Design of novelty detection techniques for optimized search engine results. JC Bose University.
  13. Ishuka, S. K., & Bhatia, K. K. (2019). A Novel Approach for Novelty Detection Using Extractive Text Summarization. Journal of Emerging Technologies and Innovative Research, 6(6), 141-154.
  14. Pooja, K. K. B., & Kumar, S. (2019). Hashing and Clustering Based Novelty Detection. SSRG International Journal of Computer Science and Engineering, 6(6), 1-9.
  15. Kumar, S., & Bhatia, K. K. (2019). Clustering Based Approach for Novelty Detection in Text Documents. Asian Journal of Computer Science and Technology, 8(2), 121-126.

 

 

 

Rafael Natalio Fontana Crespo | Artificial Intelligence | Young Scientist Award

Mr. Rafael Natalio Fontana Crespo | Artificial Intelligence | Young Scientist Award

PhD Student at Politecnico di Torino, Italy

Rafael Natalio Fontana Crespo is a dedicated and sociable Ph.D. student specializing in Computer and Control Engineering at Politecnico di Torino. With a strong academic background in mechatronics and practical experience in electrical energy analysis, he is passionate about tackling complex challenges through innovative solutions. 🌐💡

Publication Profile : 

Orcid

 

🎓 Educational Background :

Rafael is currently pursuing a Ph.D. in Computer and Control Engineering at Politecnico di Torino, Italy, since May 2022. He previously obtained a Master’s Degree in Mechatronic Engineering from the same institution, graduating with 110/110 cum laude in July 2022. His master’s thesis focused on designing and developing a distributed software platform for additive manufacturing. Rafael studied Electromechanical Engineering at the Universidad Nacional de Córdoba, Argentina, where he also completed a double degree program.

💼 Professional Experience :

Rafael gained practical experience during his internship at EPEC (Empresa Provincial de Energía de Córdoba) in Argentina, where he worked in the Statistics and Technical Department from May 2020 to May 2021. He was involved in analyzing thermal images of electrical components to prevent failures, contributing to the overall safety and efficiency of electrical systems.

📚 Research Interests : 

Rafael’s research interests lie at the intersection of computer engineering, control systems, and mechatronics, particularly focusing on additive manufacturing, machine learning applications in energy systems, and the optimization of neural networks.

📝 Publication Top Notes :

      1. Fontana Crespo, R.N., E. Patti, S. Di Cataldo, D. Cannizzaro. (2022). Design and Development of a Distributed Software Platform for Additive Manufacturing. Master’s Thesis, Politecnico di Torino.
      2. Fontana Crespo, R.N. (2023). Machine Learning in Energy Applications. Course Exam Paper, Politecnico di Torino.
      3. Fontana Crespo, R.N. (2023). IoT Platforms for Spatial Analytics in Smart Energy Systems. Course Exam Paper, Politecnico di Torino.
      4. Fontana Crespo, R.N. (2023). Optimized Execution of Neural Networks at the Edge. Course Exam Paper, Politecnico di Torino.
      5. Fontana Crespo, R.N. (2023). Adversarial Training of Neural Networks. Course Exam Paper, Politecnico di Torino.